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Abstract

We propose an efficient feed-forward model for novel view synthesis and 3D recon-
struction based on Gaussian Splatting, featuring a scalable architecture that reliably pre-
dicts multi-view depth maps and 3D Gaussian primitives from as few as two input views.
Existing multi-view depth estimation techniques typically depend on processing plane-
swept cost volumes, which generate probability distributions over a discrete set of can-
didate depths. This approach limits scalability, especially when finer depth sampling or
higher spatial resolution is required. To address this, we design an optimization-inspired
architecture OptSplat, that employs recurrent iterative updates to refine depth maps and
pixel-aligned Gaussian primitives based on previous predictions. Our model leverages
a unified update operator that iteratively indexes global cost volumes, progressively im-
proving predictions in the joint space of depth and Gaussian parameters. Comprehensive
evaluations across the real world datasets of RealEstate10K, ACID and DL3DV shows
that our model demonstrates strong cross-dataset generalization and competitive ren-
dering quality for novel views compared to the existing works with plane swept cost
volumes, while at the same time offering upto 5x reduction in the GPU memory require-
ments, especially for reconstruction with high-resolution inputs.

1 Introduction
Novel View Synthesis (NVS) involves generating photorealistic images of a scene from
novel, unseen viewpoints, given one or more input views with known camera poses [5, 14,
34, 35, 46]. As a core problem in computer vision and graphics, NVS underpins a wide
range of applications, including free-viewpoint video, scene relighting, virtual teleportation,
and immersive content creation. The central challenge lies in accurately modeling both the
3D scene geometry and complex, view-dependent appearance, particularly from sparse or
unstructured observations.

Neural rendering methods—especially NeRF-based models [3, 23]—have recently ad-
vanced the quality of novel view synthesis significantly. However, these methods typically
rely on per-scene optimization, making them unsuitable for real-time or interactive appli-
cations. In contrast, generalizable NVS models aim to synthesize novel views for previ-
ously unseen scenes in a zero-shot or few-shot setting, offering significant gains in scalabil-
ity, speed, and deployability. This property makes them particularly suitable for robotics,
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AR/VR, autonomous navigation, and real-time scene capture or editing, where fast, one-shot
inference is critical.

While recent transformer-based approaches such as LVSM [13] achieve high-quality syn-
thesis without requiring explicit geometry, they often lack the geometric precision necessary
for downstream tasks like scene editing or mixed-reality integration. In this work, we argue
for the importance of explicit geometry-aware scene representations in generalizable mod-
els—not only for accurate rendering, but also to support tasks requiring rich geometric and
semantic understanding. Building on the success of 3D Gaussian Splatting, which models
the scene as a continuous volumetric representation composed of Gaussian primitives, we
present a generalizable approach that leverages this representation to achieve both photore-
alism and geometric fidelity.

A central requirement for accurate 3D Gaussian reconstruction is reliable scene geome-
try, typically obtained via Multi-View Stereo (MVS). MVS estimates dense, 3D-consistent
depth maps from posed input views, enabling accurate placement of Gaussian primitives.
However, existing generalizable Gaussian Splatting methods—such as pixelSplat [5], MVS-
plat [8], and LS-GRM [42]—rely on full cost volume construction via plane sweep stereo
[44]. These methods scale poorly with image resolution, number of viewpoints, and depth
hypothesis density, often resulting in high memory usage and frequent out-of-memory (OOM)
failures on resource-limited hardware.

To address these limitations, we propose OptSplat, a memory-efficient and scalable
MVS architecture based on iterative refinement of local cost volumes. Instead of build-
ing a global cost volume, our network computes lightweight local volumes on-the-fly at
each refinement step, significantly reducing memory consumption while maintaining high
performance. We frame depth prediction as an optimization problem, where our model pro-
gressively refines depth estimates through a series of update blocks, leading to improved
convergence and robustness across varied scenes.

In addition to geometry, capturing accurate view-dependent radiance is critical for photo-
realistic rendering, especially in sparse-view and zero-shot settings. Our method introduces
an iterative spherical harmonics refinement module that progressively improves the radiance
field over inference steps. This approach stabilizes early predictions from limited inputs and
allows the model to adaptively refine appearance features, improving generalization to novel
scenes.

Overall, our framework can be viewed as learning to optimize for generalizable recon-
struction and novel view synthesis. Our network comprises a sequence of update operators
that emulate a first-order optimization process—not by explicitly computing gradients, but
by retrieving features from cost volumes to inform each update. Unlike recurrent methods
such as R-MVSNet [45], which focus solely on multi-view depth estimation, our update
mechanism jointly refines both multi-view depth and 3D Gaussian parameters, enabling co-
hesive and efficient optimization across geometry and appearance.

We summarize our key contributions as follows:

1. We propose a scalable architecture with iterative optimization layers based on GRU
units, enabling sequential estimation and refinement of 3D Gaussian representations.

2. Our method achieves competitive performance compared to state-of-the-art approaches,
demonstrating strong cross-dataset generalization, while reducing GPU memory con-
sumption by approximately 5×—making it suitable for deployment on resource-constrained
hardware without compromising rendering quality.
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3. The design of our model inherently supports scalability with respect to the number
of input views, image resolution, and depth candidates, enabling efficient large-scale
generalizable reconstruction and novel view synthesis.

2 Related Work
Optimizing 3D Representations: Neural Radiance Fields (NeRF) [23] pioneered differ-
entiable volumetric scene representations for novel view synthesis from posed multi-view
images. Subsequent efforts have advanced rendering quality [3, 4], robustness to pose un-
certainty [16, 26], and real-time rendering speed [12, 25]. Extensions incorporating explicit
point-based primitives [41, 47] improved efficiency but still rely on costly volumetric ray
marching. Recently, Gaussian Splatting [7, 14] offers a continuous, explicit, and differen-
tiable representation that supports real-time rasterization-based rendering with high fidelity,
presenting a compelling alternative for scalable view synthesis.
Sparse View Reconstruction: Early NeRF and Gaussian Splatting methods required dense
multi-view inputs (often exceeding 100 views) for per-scene optimization. Recent approaches
target sparse-view reconstruction and synthesis [5, 6, 8, 46], typically involving hand-crafted
depth priors [10, 24] or diffusion-based generative regularization [37] to handle undercon-
strained regions. Despite improved quality, these methods rely on costly test-time optimiza-
tion. In contrast, our work addresses zero-shot reconstruction and synthesis, enabling direct
feed-forward prediction from sparse inputs without per-scene fine-tuning.
Feed-Forward 3D Gaussian Splatting: Feed-forward models leveraging 3D Gaussians
[5, 8, 28, 36] demonstrate advantages in real-time rendering compared to implicit NeRF
representations [21, 39]. Single-view methods such as Splatter Image [29] and Flash3D [28]
regress pixel-aligned Gaussians using monocular depth priors but remain limited by inherent
monocular ambiguities and dependence on learned spatial priors. Multi-view approaches
like pixelSplat [5], MVSplat [8], and DepthSplat [40] improve reconstruction by estimat-
ing consistent depth and Gaussian parameters from multiple views. These methods rely on
plane-sweep stereo to construct global cost volumes for depth inference, with DepthSplat
leveraging pretrained monocular depth features [43] for enhanced accuracy. However, pro-
cessing full global cost volumes hinders scalability with input resolution and view count
due to high memory demands. Our approach circumvents this bottleneck by computing lo-
cal cost volumes and performing iterative depth refinement, enabling efficient large-scale
reconstruction without sacrificing accuracy.
Recurrent Optimization for Scene Reconstruction: Optimization-inspired architectures
have improved generalization across vision tasks by mimicking iterative solvers [1, 2]. RAFT
[30] introduced GRU-based recurrent refinement of 4D correlation volumes for optical flow,
a concept extended to multi-view stereo depth estimation [18, 22]. DROID-SLAM [31]
and DPVO [32] further applied recurrent optimization to joint depth and pose estimation,
typically trained with ground-truth supervision minimizing reprojection error. Our method
relates to RAFT-MVS [22] by recurrently updating depth predictions from cost volumes
but differs critically: we do not rely on ground-truth depth or pose for training, instead
optimizing a photometric reconstruction loss. Furthermore, our recurrent update operator
jointly refines multi-view depth and Gaussian radiance parameters, enabling accurate, scal-
able estimation of geometry and appearance within a fully feed-forward pipeline. This de-
sign supports zero-shot generalization and efficient rendering from sparse multi-view inputs,
addressing key challenges in practical novel view synthesis.
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Figure 1: Overview of the OptSplat architecture. Given posed multi-view RGB inputs,
OptSplat constructs local cost volumes via plane sweep stereo and iteratively refines 3D-
consistent depth maps and 3D Gaussians using a GRU-based update operator. The entire
pipeline operates in a fully feed-forward, zero-shot manner, enabling efficient and scalable
novel view synthesis with high geometric and visual fidelity

3 Method

Given N sparse input images I = {Ii}N
i=1, (Ii ∈ RH×W×3), their corresponding intrinsics

K = {Ki}N
i=1 and known camera poses E = {E i}N

i=1, (E i = [Ri | t i], with Ri and t i being the
rotation matrices and translation vectors respectively), we aim to (1) reconstruct the scene
using a representation G comprised of Gaussian primitives, and (2) synthesize novel views
It given target camera intrinsics Kt and extrinsics Et .
Scene Representation: The scene representation G consists of a set of 3D Gaussians [14]
G = {(µ i,σ i,Σi,ci)}M

i=1, where µ i ∈ R3 is the mean (position) of the Gaussian in 3D space,
σ i ∈ R is the opacity, Σi ∈ R3×3 is the covariance matrix, si ∈ R3 is the coefficient vector
for spherical harmonics [14], and M is the total number of Gaussians. Following prior works
[5, 8], we assign a 3D Gaussian for every p× p patch in the input image. The task thus
reduces to learning the parameters θ of a neural network fθ , that maps the inputs (I,K, E)
to the scene representation G:

fθ : {Ii,Ki,E i}N
i=1 −→ {(µ i,σ i,Σi,si)}

H
p ×

W
p ×N

i=1 (1)

In the following sections, we give an overview of the key components of our model
architecture (refer Fig 1).
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(a) (b)
Figure 2: Overview of the proposed modules in OptSplat. (a) Iterative local cost volume
extraction: At each refinement step, we dynamically index a global cost volume using the
current depth estimate to construct localized cost volumes for recurrent depth refinement. (b)
Appearance-Guided Upsampler: A UNet-style architecture upsamples the final hidden state
oT to the input image resolution, producing dense 3D Gaussian parameters guided by image
appearance features.

3.1 Multi-View Feature Extraction and Cost Volumes

Given a set of K images {Ii}K
i=1,(Ii ∈ RH×W×3), we use a UniMatch backbone [38], similar

to [8], to extract cross-view context-aware feature maps {F i}K
i=1,(F i ∈ RH

s ×
W
s ×d), where s

is the downsampling factor and d the feature dimension. The backbone consists of a shal-
low ResNet [11] followed by a Swin-style transformer [20] with self- and cross-attention
modules [33] to encode cross-view contextual information.

To enable geometry-aware scene reconstruction, we estimate dense depth maps for each
input view via plane sweep stereo [9]. We uniformly sample D depth values between dmin
and dmax in inverse depth space. Then, for each input view i, we construct a cost volume
Ci ∈ RH

s ×
W
s ×D by measuring the similarity between the reference feature map F i and the

features of other views warped onto the depth planes of view i.
This cost volume serves as the geometric basis for depth prediction. For a comprehensive

overview of feature warping, projection, and view synthesis, we direct the readers to the
supplementary material.

3.2 Iterative Local Cost Volume Extractor

Computing and processing full cost volumes at high resolution is computationally expensive
and memory-intensive, especially when scaling to high-resolution images, large depth sam-
pling rates, or many input views. Prior works either restrict input resolution to 256× 256
[5, 8], or downsample the cost volumes significantly (e.g., by a factor of 8) [40], limiting
reconstruction fidelity.

We propose a memory-efficient, iterative depth refinement strategy based on local cost
volume indexing. Rather than estimating depths in a single forward pass from the entire cost
volume, we model the problem as an iterative search over a 1D depth space. At each step t
in T total iterations, the network predicts depth values dt per pixel by locally querying the
global cost volume Ci around the previous estimate dt−1 (refer Fig 2a).

We extract a local cost vector LCt−1
i (up.q)∈R2R+1 for each pixel by performing a differ-

entiable lookup over the global cost volume in a small window of radius R, centered at the
normalized previous estimate:

LCt−1
i (up.q) = LookUp

(
Ci(up,q),N (d̃t−1

p,q )
)

(2)
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This local feature vector captures fine-grained matching scores near the current estimate
and enables the network to infer more accurate depth updates over time. Full lookup logic
and normalization details are provided in the supplementary material.

3.3 Recurrent Updates for Depth and Gaussian Predictions

We propose a unified, recurrent framework that jointly estimates multi-view depths and
pixel-aligned 3D Gaussian primitives. Unlike prior MVS approaches that refine depth alone
[18, 44, 45], our model performs iterative updates over both geometry and appearance pa-
rameters, enabling efficient and accurate scene representation.

At each iteration t, the model refines a depth map dt and predicts a set of 3D Gaussians
Gt . The update module receives the previous depth estimate dt−1, a local cost volume LCt−1

(indexed from the global cost volume as described in Sec. 3.2), and context features Fc
derived from backbone features via two convolutional layers. These are concatenated and
passed through a GRU-based update operator implemented using convolutional gates:

zt = σ
(
Conv3×3([ht−1,xt ])

)
, rt = σ

(
Conv3×3([ht−1,xt ])

)
(3)

h̃t = tanh
(
Conv3×3([rt ⊙ht−1,xt ])

)
, ht = (1− zt)⊙ht−1 + zt ⊙ h̃t (4)

The hidden state ht is used to generate an output state ot and an upsampling mask mt :

[ot ,mt ] = OutputHead(ht), ot
s = ConvexUpsampling(ot ,mt) (5)

This upsampled output ot
s is then decoded into three key prediction heads:

∆d̃t
= DisparityHead(ot

s), σ
t = DensityHead(ot

s), [Σt ,st ] = GaussianHead(ot
s)

(6)

These heads predict residual disparity updates ∆d̃t , Gaussian opacity σ t , and both co-
variance Σt and SH color coefficients st . The predicted disparity is then refined as d̃t

=

d̃t−1
+∆d̃t .

To enforce a consistent optimization trajectory, the update module is weight-tied across
all iterations, analogous to a learned first-order optimizer.

3.4 2D Appearance-Guided Upsampler for 3D Gaussians

While the update operator predicts depths and pixel-aligned Gaussian parameters at the in-
put image resolution, the GRU itself operates at a lower spatial scale defined by the cost
volume resolution (downsampling factor s). The intermediate upsampling via convex masks
is context-aware but limited in resolving fine object boundaries, often leading to depth blur-
ring and inaccurate Gaussian placements when unprojected to 3D.

To address this, we introduce a final refinement module based on a UNet-style archi-
tecture [38], designed to progressively upsample the final output state oT using multi-scale
image features (refer Fig 2b). The encoder processes the input image I into feature maps at
varying resolutions (down to s), while the decoder upsamples oT to the full resolution. Skip
connections inject appearance cues from the encoder into the decoder to guide high-fidelity
upsampling.
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Method Time GPU Memory RealEstate10K ACID
(s) (MB) PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

pixelSplat - - 25.89 0.858 0.142 28.14 0.839 0.150
latentSplat - - 23.93 0.812 0.164 - - -
GS-LRM - - 28.10 0.892 0.114 - - -
MVSplat 0.061 1217 26.39 0.869 0.128 28.25 0.843 0.144
DepthSplat 0.089 2638 27.47 0.889 0.114 - - -
OptSplat (Ours) 0.091 658 25.74 0.866 0.124 28.17 0.849 0.136

Table 1: In-domain novel view synthesis: Comaprison on RealEstate10K and ACID datasets

The refined output state o f is passed through parallel prediction heads to obtain the final
estimates for disparity, density, covariance, and color:

o f = UNet(I,oT ) (7)
[d f ,σ f ,Σ f ,s f ] = PredictionHeads(o f ) (8)

These final predictions define the full-resolution multi-view depths and 3D Gaussian
parameters, which are then rendered from novel views using a tile-based rasterizer [14].

4 Experiments

4.1 Settings
Datasets: We use large-scale scene level datasets of RealEstate10K [48], ACID [19] and
DL3DV-10K [17] to train a generalizable view synthesis model. RealEstate10K primar-
ily comprises of real estate scenes with indoor layouts downloaded from YouTube, which
are split into 67,477 training scenes and 7,289 testing scenes, while ACID contains nature
scenes captured by aerial drones, which are split into 11,075 training scenes and 1,972 testing
scenes. DL3DV-10K is a comprehensive large-scale dataset of real-world scenes captured
from different points of interest like restaurants, shopping malls, tourist spots, etc, and with
diverse transparency, lighting and reflectance conditions. It consists of 51.2 million frames
in 4K resolution from 10,510 videos, and following DepthSplat [40], we split the dataset into
9076 training scenes and 95 test scenes.
Comparison to Baselines: To demonstrate the effectiveness of our method, we consider
several recent methods tackling the problem of generliazable novel view synthesis. We only
consider works that has 3D reconstruction as an intermediate step to novel view synthesis
[5, 8, 36, 40, 42], especially the ones with an explicit differentiable scene representation
parametrized by 3D Gaussians. We do not provide any comparison with models that treats
novel view synthesis as an end-to-end view prediction problem from input views without
the need for any geometry-aware scene representation [13, 15, 27], as this deviates from the
spirit of our proposed approach.

Please refer to the supplementary material for the training and implementation details.

4.2 Main Results
In this section, we demonstrate the effectiveness of our trained models in terms of the
quality of novel view renderings. We use Peak-Signal-To-Noise-Ratio (PSNR, Structural-
Similarity-Index-Measure (SSIM) and Learned-Perceptual-Image-Patch-Similarity (LPIPS)
measures to compare the quality of rendered images with the ground truth.
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Method GPU Memory DL3DV ACID
(MB) PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

MVSplat 1217 25.55 0.833 0.119 28.15 0.841 0.147
DepthSplat 2638 27.99 0.897 0.084 28.37 0.847 0.141
OptSplat (Ours) 658 26.69 0.875 0.093 27.39 0.836 0.144

Table 2: Cross-domain novel view synthesis: Zero-shot generalization on DL3DV and ACID
datasets for models trained on RealEstate10K

Figure 3: Input view depth predictions and novel view renderings from OptSplat over the
iterations of recurrent optimization.

In-domain novel view synthesis: In Table 1, we compare the rendering quality and mem-
ory efficiency of our model against MVSplat and DepthSplat on the RealEstate10K and
ACID datasets. Our approach achieves competitive rendering performance while requiring
significantly less memory—approximately 50% and 25% of the memory used by MVSplat
and DepthSplat, respectively. Specifically, our model operates within a memory footprint
of under 700,MB for 256× 256 resolution inputs, compared to over 2600,MB required by
DepthSplat, which offers only marginal improvements in rendering fidelity.
Cross-domain novel view synthesis: Table 2 presents a cross-dataset generalization study,
where models trained on RealEstate10K are evaluated on the ACID and DL3DV datasets.
Despite the DL3DV scenes featuring more complex geometry and larger viewpoint varia-
tions, our model generalizes robustly across datasets, maintaining strong rendering quality
while consuming only a fraction of the memory used by DepthSplat. For visual comparison
of depth predictions and novel-view renderings of our model with MVSplat and DepthSplat,
we refer the readers to the supplementary material.

4.3 Ablation Study and Analysis

Impact of number of refinement iterations: Fron Table 3, we could see that our Table 3
highlights the convergence behavior of our model as the number of recurrent refinement iter-
ations increases. In this analysis, we only consider outputs refined using convex upsampling.
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The results validate our design objective: the update operator effectively learns to perform
optimization-like refinement in a feed-forward manner, progressively improving scene ge-
ometry and appearance reconstruction. Furthermore, as shown in Figure 3, both the predicted
depth maps and the synthesized novel views exhibit consistent refinement across iterations,
capturing increasingly fine-grained details and producing sharper reconstructions over time.

# Recurrent
Updates

RealEstate10K DL3DV Time GPU Memory
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ (s) (MB)

1 22.793 0.771 0.178 21.754 0.690 0.2 0.061 334
2 23.361 0.791 0.166 23.019 0.751 0.17 0.064 338
3 23.458 0.794 0.164 23.125 0.755 0.168 0.071 338
4 23.493 0.795 0.163 23.154 0.756 0.168 0.078 338
5 23.509 0.796 0.163 23.163 0.756 0.168 0.080 338

Table 3: Model evaluation with different number of iterations of recurrent updates

Resolution of the Cost Volumes: We evaluate OptSplat with recurrent updates operating
at downscale factors s = 4 and s = 8. As shown in Table 4, reducing the resolution of the
local cost volume has minimal impact on rendering quality. Thanks to our update operator
and appearance-guided upsampler, the model achieves up to 50% memory and 20% runtime
savings with negligible performance drop.

Cost Volume
Resolution

RealEstate10K DL3DV Time GPU Memory
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ (s) (MB)

4 25.76 0.867 0.124 26.75 0.876 0.092 0.156 1279
8 25.69 0.866 0.123 26.34 0.868 0.095 0.127 658

Table 4: Comparison with different cost volume resolutions

Impact of Appearance Guided Upsampling: As shown in Table 5, our appearance-guided
upsampling module leads to consistent improvements across all evaluation metrics. This
demonstrates its effectiveness in leveraging 2D image cues to refine and upsample the 3D
Gaussian predictions. While this enhancement introduces a modest increase in memory
consumption, the gains in reconstruction quality justify the trade-off.

Model RealEstate10K DL3DV Time GPU Memory
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ (s) (MB)

w/o Appearance-Guided
Gaussian Upsampler 23.51 0.796 0.163 23.16 0.756 0.168 0.080 338

Full Model 25.69 0.866 0.123 26.34 0.868 0.095 0.127 658

Table 5: Effect of Appearance-Guided Gaussian Upsampling

5 Conclusion

In this work, we have demonstrated that a generalizable model equipped with recurrent up-
date blocks offers a scalable architecture suitable for deployment in resource-constrained en-
vironments, with minimal compromise in reconstruction and rendering quality. Furthermore,
our framework opens promising directions for future research, particularly in integrating
mechanisms inspired by scene-specific optimization techniques into the iterative refinement
stage—potentially enhancing the model’s generalization capabilities even further.
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